An Asymptotically Tight Security Analysis of the Iterated Even-Mansour Cipher

Rodolphe LAMPE, Jacques PATARIN and Yannick SEURIN

December 3, 2012

Definition of the Even-Mansour Cipher

$k_{0}, k_{1}, \ldots, k_{t} \in\{0,1\}^{n}$
P_{1}, \ldots, P_{t} public permutations of $\{0,1\}^{n}$

Figure: The iterated Even-Mansour cipher E.
defined in the random permutation model: the adversary has oracle access to internal permutations P_{1}, \ldots, P_{t} (one can think of P_{i} as e.g. AES with a fixed publicly known key).

CCA-Indistinguishability

P_{1}, \ldots, P_{t}, Q are uniformly random permutations.
E is the iterated Even-Mansour scheme with uniformly random keys k_{0}, \ldots, k_{t}.

Figure: The indistinguishability game.

Previous results

"A Construction of a Cipher from a Single Pseudorandom Permutation" Even and Mansour (J.C.) :

$$
\forall t \geq 1, \quad \operatorname{Adv}_{E}^{c c a}(q) \leq \mathcal{O}\left(\frac{q^{2}}{N}\right)
$$

"Key-Alternating Ciphers in a Provable Setting: Encryption Using a Small Number of Public Permutations" of Bogdanov et al. (EUROCRYPT 2012) :

$$
\forall t \geq 2, \quad \operatorname{Adv}_{E}^{c c a}(q) \leq \mathcal{O}\left(\frac{q^{3}}{N^{2}}\right)
$$

"Improved Security Bounds for Key-Alternating Ciphers via Hellinger Distance" of Steinberger (eprint.iacr.org):

$$
\forall t \geq 3, \quad \operatorname{Adv}_{E}^{c c a}(q) \leq \mathcal{O}\left(\frac{q^{4}}{N^{3}}\right)
$$

Conjecture

Conjecture of Bogdanov et al. (EUROCRYPT 2012) :

$$
\forall t \geq 1, \quad \operatorname{Adv}_{E}^{c c a}(q) \leq \mathcal{O}\left(\frac{q^{t+1}}{N^{t}}\right)
$$

Our result

$$
\forall t, \quad \operatorname{Adv}_{E}^{n c p a}(q) \leq \mathcal{O}\left(\frac{q^{t+1}}{N^{t}}\right)
$$

$\forall t$ even, $\quad \operatorname{Adv}_{E}^{c c a}(q) \leq \mathcal{O}\left(\left(\frac{q^{t+2}}{N^{t}}\right)^{\frac{1}{4}}\right)$.

NCPA-Indistinguishability

The attacker first makes q queries to each P_{j} and obtains equations

$$
P_{j}\left(a_{j}^{i}\right)=b_{j}^{i}, \forall i \leq q, j \leq t
$$

then he makes q non-adaptive queries to E or Q.

Figure: The indistinguishability game.

Statistical distance

Let μ and ν be two distributions on Ω, then the statistical distance between μ and ν is:

$$
\|\mu-\nu\|=\frac{1}{2} \sum_{x \in \Omega}|\mu(x)-\nu(x)|
$$

Advantage

Let S_{1} and S_{2} be two systems, $x=\left(x_{1}, \ldots, x_{q}\right)$ be q queries and μ_{x} and ν_{x} the distributions of the outputs of S_{1} and S_{2} on inputs x then, the advantage to distinguish S_{1} from S_{2} satisfy:

$$
\operatorname{Adv}_{S_{1}, S_{2}}^{n c p a}(q)=\max _{x}\left\|\mu_{x}-\nu_{x}\right\|
$$

Application to Even-Mansour

Let $x=\left(x_{1}, \ldots, x_{q}\right)$ be any q-tuple of queries and μ_{0} : distribution of outputs in the ideal world (Q) with inputs x. μ_{q} : distribution of outputs in the real world (E) with inputs x.

We will upperbound $\left\|\mu_{q}-\mu_{0}\right\|$ independently of x to upperbound the advantage of any NCPA-distinguisher.

Dividing the problem in q smaller problems

Consider the distributions of:

Dividing the problem in q smaller problems

Consider the distributions of:

- $Q\left(x_{1}\right)$ with Q uniformly random, x_{1} fixed.

Dividing the problem in q smaller problems

Consider the distributions of:

- $Q\left(x_{1}\right)$ with Q uniformly random, x_{1} fixed.
- $E\left(u_{1}\right)$ with any E, u_{1} uniformly random.

Dividing the problem in q smaller problems

Consider the distributions of:

- $Q\left(x_{1}\right)$ with Q uniformly random, x_{1} fixed.
- $E\left(u_{1}\right)$ with any E, u_{1} uniformly random.

Same output distribution (uniform).

Another ideal world

P_{1}, \ldots, P_{t} are uniformly random permutations verifying
$P_{j}\left(a_{j}^{i}\right)=b_{j}^{i}, \forall i \leq q, j \leq t$.
E is the iterated Even-Mansour scheme with uniformly random keys k_{0}, \ldots, k_{t}.
u_{1}, \ldots, u_{q} are uniformly random.

Figure: The indistinguishability game.

Definition of world ℓ

P_{1}, \ldots, P_{t} are uniformly random permutations verifying
$P_{j}\left(a_{j}^{i}\right)=b_{j}^{i}, \forall i \leq q, j \leq t$.
E is the iterated Even-Mansour scheme with uniformly random keys k_{0}, \ldots, k_{t}.
$u_{\ell+1}, \ldots, u_{q}$ are uniformly random.

Figure: The indistinguishability game.

Advantage

μ_{0} : distribution of outputs in the ideal world.
μ_{ℓ} : distribution of outputs in the world ℓ.
μ_{q} : distribution of outputs in the real world.

$$
\mathbf{A d v}_{E}^{n c p a}(q) \leq \sum_{\ell=0}^{q-1}\left\|\mu_{\ell+1}-\mu_{\ell}\right\|
$$

Definition of a Coupling

A coupling of μ and ν is a distribution λ on $\Omega \times \Omega$ such that:

$$
\left\{\begin{array}{l}
\forall x \in \Omega, \sum_{y \in \Omega} \lambda(x, y)=\mu(x) \\
\forall y \in \Omega, \sum_{x \in \Omega} \lambda(x, y)=\nu(y) .
\end{array}\right.
$$

Definition of a Coupling

A coupling of μ and ν is a distribution λ on $\Omega \times \Omega$ such that:

$$
\left\{\begin{array}{l}
\forall x \in \Omega, \sum_{y \in \Omega} \lambda(x, y)=\mu(x) \\
\forall y \in \Omega, \sum_{x \in \Omega} \lambda(x, y)=\nu(y) .
\end{array}\right.
$$

In other words, λ is a joint distribution whose marginal distributions are resp. μ and ν.

Definition of a Coupling

A coupling of μ and ν is a distribution λ on $\Omega \times \Omega$ such that:

$$
\left\{\begin{array}{l}
\forall x \in \Omega, \sum_{y \in \Omega} \lambda(x, y)=\mu(x) \\
\forall y \in \Omega, \sum_{x \in \Omega} \lambda(x, y)=\nu(y) .
\end{array}\right.
$$

In other words, λ is a joint distribution whose marginal distributions are resp. μ and ν.
The fundamental result of the coupling technique is the following one:

Definition of a Coupling

A coupling of μ and ν is a distribution λ on $\Omega \times \Omega$ such that:

$$
\left\{\begin{array}{l}
\forall x \in \Omega, \sum_{y \in \Omega} \lambda(x, y)=\mu(x) \\
\forall y \in \Omega, \sum_{x \in \Omega} \lambda(x, y)=\nu(y) .
\end{array}\right.
$$

In other words, λ is a joint distribution whose marginal distributions are resp. μ and ν.
The fundamental result of the coupling technique is the following one:
If $(X, Y) \sim \lambda$ then

$$
\|\mu-\nu\| \leq \operatorname{Pr}[X \neq Y] .
$$

Example of coupling

$p=0.5$

$p=0.6$

Example of coupling

Prove that, over 100 run, the second coin make more tails.

Example of coupling

Prove that, over 100 run, the second coin make more tails. Boring solution: Compute the binomial law.

Example of coupling

$$
p=0.5
$$

$p=0.6$

Prove that, over 100 run, the second coin make more tails. Boring solution: Compute the binomial law. Elegant solution: Couple the coin's distributions !!

Example of coupling

Correlate the coin's distribution:

Example of coupling

Correlate the coin's distribution:

- If the first coin makes a tail, the second coin makes a tail.

Example of coupling

Correlate the coin's distribution:

- If the first coin makes a tail, the second coin makes a tail.
- If the first coin makes a head, the second coin makes a tail with probability 0.2.

Example of coupling

Correlate the coin's distribution:

- If the first coin makes a tail, the second coin makes a tail.
- If the first coin makes a head, the second coin makes a tail with probability 0.2
It's clear that marginal distributions are respected and that the second coin makes more tails.

Coupling μ_{ℓ} and $\mu_{\ell+1}$

Using the Coupling lemma, if λ is a coupling of μ_{ℓ} and $\mu_{\ell+1}$ and $(X, Y) \sim \lambda$, then:

Coupling μ_{ℓ} and $\mu_{\ell+1}$

Using the Coupling lemma, if λ is a coupling of μ_{ℓ} and $\mu_{\ell+1}$ and $(X, Y) \sim \lambda$, then:

$$
\left\|\mu_{\ell+1}-\mu_{\ell}\right\| \leq \operatorname{Pr}[X \neq Y]
$$

Coupling for one round

Figure: The indistinguishability game.

Coupling for one round

Figure: The indistinguishability game.

Coupling of the first ℓ inputs

Coupling of the first ℓ inputs

$$
P_{1}^{\prime}\left(x_{i} \oplus k_{0}\right):=P_{1}\left(x_{i} \oplus k_{0}\right)
$$

Coupling of the first ℓ inputs

$$
P_{1}^{\prime}\left(x_{i} \oplus k_{0}\right):=P_{1}\left(x_{i} \oplus k_{0}\right)
$$

implies a successful coupling for the i-th query.

Coupling of the $\ell+1$-th query

We want:

Coupling of the $\ell+1$-th query

We want:

$$
P_{1}^{\prime}\left(u_{\ell+1} \oplus k_{0}\right):=P_{1}\left(x_{\ell+1} \oplus k_{0}\right)
$$

Coupling of the $\ell+1$-th query

We want:

$$
P_{1}^{\prime}\left(u_{\ell+1} \oplus k_{0}\right):=P_{1}\left(x_{\ell+1} \oplus k_{0}\right)
$$

If both $P_{1}^{\prime}\left(u_{\ell+1} \oplus k_{0}\right)$ and $P_{1}\left(x_{\ell+1} \oplus k_{0}\right)$ are not already defined by an equation $P_{1}\left(a_{1}^{i}\right)=b_{1}^{i}$ or $P_{1}^{\prime}\left(a_{1}^{i}\right)=b_{1}^{i}$ then we set the equation, the coupling is successful.

Coupling of the $\ell+1$-th query

We can't couple if:

- $\exists i \leq q, x_{\ell+1} \oplus k_{0}=a_{1}^{i}$ or
- $\exists i \leq q, u_{\ell+1} \oplus k_{0}=a_{1}^{i}$.

Coupling of the $\ell+1$-th query

We can't couple if:

- $\exists i \leq q, x_{\ell+1} \oplus k_{0}=a_{1}^{i}$ or
- $\exists i \leq q, u_{\ell+1} \oplus k_{0}=a_{1}^{i}$.

The probability of not coupling is upperbounded by:
$\frac{2 q}{N}$.

Result for one round

We have

$$
\operatorname{Adv}_{E_{1}}^{n c p a}(q) \leq \sum_{\ell=0}^{q-1} \frac{2 q}{N}=\frac{2 q^{2}}{N}
$$

Result for t rounds

We use the same strategy, taking the same keys in both systems and fixing $P_{j}^{\prime}=P_{j}$ when computing the outputs of x_{1}, \ldots, x_{ℓ}.

Result for t rounds

We use the same strategy, taking the same keys in both systems and fixing $P_{j}^{\prime}=P_{j}$ when computing the outputs of x_{1}, \ldots, x_{ℓ}.
For the $\ell+1$-th query, we can't couple if there are collisions at every round. The probability of not coupling is upperbounded by:

$$
\frac{(2 q)^{t}}{N^{t}}
$$

because all keys are independent.

Result for t rounds

$\operatorname{Adv}_{E}^{n c p a}(q) \leq \frac{q \times(2 q)^{t}}{N^{t}}$

Two weak make one strong

Composing two NCPA-secure ciphers gives a CCA-secure cipher.

Using

$$
E M_{2 t} \equiv E M_{t} \circ E M_{t}^{-1}
$$

we find that for $2 t$ rounds, one has:

$$
\operatorname{Adv}_{E}^{c c a}(q) \leq 2 \sqrt{\frac{q \times(2 q)^{t}}{N^{t}}}=\mathcal{O}\left(\frac{q^{\frac{t+1}{2}}}{N^{\frac{t}{2}}}\right)=\mathcal{O}\left(\frac{q^{\frac{2 t+2}{4}}}{N^{\frac{2 t}{4}}}\right)
$$

CCA security for small number of
 rounds

rounds	Conjectured	Best known bound	Reference
1	$1 / 2$	$1 / 2$	(Even \& Mansour)
2	$2 / 3$	$2 / 3$	(Bogdanov et al.)
3	$3 / 4$	$3 / 4$	(Steinberger)
\ldots	\ldots	\ldots	\ldots
t	$t /(t+1)$	$3 / 4$	(St., this paper)
\ldots	\ldots	\ldots	\ldots
8	$8 / 9$	$4 / 5$	(this paper)
10	$10 / 11$	$5 / 6$	(this paper)
\ldots	\ldots	\ldots	\ldots
$2 t$	$(2 t) /(2 t+1)$	$2 t /(2 t+2)$	(this paper)

CCA security for small number of
 rounds

rounds	Conjectured	Best known bound	Reference
1	$1 / 2$	$1 / 2$	(Even \& Mansour)
2	$2 / 3$	$2 / 3$	(Bogdanov et al.)
3	$3 / 4$	$3 / 4$	(Steinberger)
\ldots	\ldots	\ldots	\ldots
t	$t /(t+1)$	$3 / 4$	(St., this paper)
\ldots	\ldots	\ldots	\ldots
8	$8 / 9$	$4 / 5$	(this paper)
10	$10 / 11$	$5 / 6$	(this paper)
\ldots	\ldots	\ldots	\ldots
$2 t$	$(2 t) /(2 t+1)$	$2 t /(2 t+2)$	(this paper)

Open problem: Prove the bound $N^{t /(t+1)}$ for adaptive adversaries (understand what adaptivity really brings to the adversary).

