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Definition of the Even-Mansour Cipher

k0, k1, ..., kt ∈ {0,1}n
P1, ...,Pt public permutations of {0,1}n
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Figure: The iterated Even-Mansour cipher E .

defined in the random permutation model: the adversary has
oracle access to internal permutations P1, . . . ,Pt (one can think
of Pi as e.g. AES with a fixed publicly known key).



CCA-Indistinguishability
P1, ...,Pt ,Q are uniformly random permutations.
E is the iterated Even-Mansour scheme with uniformly random
keys k0, ..., kt .

P1 · · · Pt E

attacker

P1 · · · Pt Q

attacker

real world ideal world

Figure: The indistinguishability game.



Previous results
"A Construction of a Cipher from a Single Pseudorandom
Permutation" Even and Mansour (J.C.) :

∀t ≥ 1, Advcca
E (q) ≤ O

(
q2

N

)
.

"Key-Alternating Ciphers in a Provable Setting: Encryption
Using a Small Number of Public Permutations" of Bogdanov et
al. (EUROCRYPT 2012) :

∀t ≥ 2, Advcca
E (q) ≤ O

(
q3

N2

)
.

"Improved Security Bounds for Key-Alternating Ciphers via
Hellinger Distance" of Steinberger (eprint.iacr.org):

∀t ≥ 3, Advcca
E (q) ≤ O

(
q4

N3

)
.



Conjecture

Conjecture of Bogdanov et al. (EUROCRYPT 2012) :

∀t ≥ 1, Advcca
E (q) ≤ O

(
qt+1

N t

)
.



Our result

∀t , Advncpa
E (q) ≤ O

(
qt+1

N t

)
,

∀t even, Advcca
E (q) ≤ O

(qt+2

N t

) 1
4

 .



NCPA-Indistinguishability
The attacker first makes q queries to each Pj and obtains
equations

Pj(ai
j ) = bi

j , ∀i ≤ q, j ≤ t ,

then he makes q non-adaptive queries to E or Q.

E

attacker

x1, . . . , xq

Q

attacker

x1, . . . , xq

real world ideal world

Figure: The indistinguishability game.



Statistical distance

Let µ and ν be two distributions on Ω, then the statistical
distance between µ and ν is:

‖µ− ν‖ =
1
2

∑
x∈Ω

|µ(x)− ν(x)| .



Advantage

Let S1 and S2 be two systems, x = (x1, . . . , xq) be q queries
and µx and νx the distributions of the outputs of S1 and S2 on
inputs x then, the advantage to distinguish S1 from S2 satisfy:

Advncpa
S1,S2

(q) = max
x
‖µx − νx‖



Application to Even-Mansour

Let x = (x1, . . . , xq) be any q−tuple of queries and
µ0: distribution of outputs in the ideal world (Q) with inputs x .
µq: distribution of outputs in the real world (E) with inputs x .

We will upperbound ‖µq − µ0‖ independently of x to
upperbound the advantage of any NCPA-distinguisher.



Dividing the problem in q smaller
problems

Consider the distributions of:

• Q(x1) with Q uniformly random, x1 fixed.
• E(u1) with any E , u1 uniformly random.

Same output distribution (uniform).
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Another ideal world

P1, ...,Pt are uniformly random permutations verifying
Pj(ai

j ) = bi
j , ∀i ≤ q, j ≤ t .

E is the iterated Even-Mansour scheme with uniformly random
keys k0, ..., kt .
u1, ...,uq are uniformly random.

inputs to E : x1, . . . , xq inputs to E : u1, . . . ,uq

E E

real world ideal world

Figure: The indistinguishability game.



Definition of world `
P1, ...,Pt are uniformly random permutations verifying
Pj(ai

j ) = bi
j , ∀i ≤ q, j ≤ t .

E is the iterated Even-Mansour scheme with uniformly random
keys k0, ..., kt .
u`+1, ...,uq are uniformly random.

x1, . . . , x`,u`+1, . . . ,uq x1, . . . , x`, x`+1, . . . ,uq

E E

world ` world `+ 1

distribution µ` distribution µ`+1

Figure: The indistinguishability game.



Advantage

µ0: distribution of outputs in the ideal world.
µ`: distribution of outputs in the world `.
µq: distribution of outputs in the real world.

Advncpa
E (q) ≤

q−1∑
`=0

‖µ`+1 − µ`‖



Definition of a Coupling

A coupling of µ and ν is a distribution λ on Ω× Ω such that:
∀x ∈ Ω,

∑
y∈Ω

λ(x , y) = µ(x)

∀y ∈ Ω,
∑
x∈Ω

λ(x , y) = ν(y).

In other words, λ is a joint distribution whose marginal
distributions are resp. µ and ν.
The fundamental result of the coupling technique is the
following one:
If (X ,Y ) ∼ λ then

‖µ− ν‖ ≤ Pr[X 6= Y ].



Definition of a Coupling

A coupling of µ and ν is a distribution λ on Ω× Ω such that:
∀x ∈ Ω,

∑
y∈Ω

λ(x , y) = µ(x)

∀y ∈ Ω,
∑
x∈Ω

λ(x , y) = ν(y).

In other words, λ is a joint distribution whose marginal
distributions are resp. µ and ν.

The fundamental result of the coupling technique is the
following one:
If (X ,Y ) ∼ λ then

‖µ− ν‖ ≤ Pr[X 6= Y ].



Definition of a Coupling

A coupling of µ and ν is a distribution λ on Ω× Ω such that:
∀x ∈ Ω,

∑
y∈Ω

λ(x , y) = µ(x)

∀y ∈ Ω,
∑
x∈Ω

λ(x , y) = ν(y).

In other words, λ is a joint distribution whose marginal
distributions are resp. µ and ν.
The fundamental result of the coupling technique is the
following one:

If (X ,Y ) ∼ λ then

‖µ− ν‖ ≤ Pr[X 6= Y ].



Definition of a Coupling

A coupling of µ and ν is a distribution λ on Ω× Ω such that:
∀x ∈ Ω,

∑
y∈Ω

λ(x , y) = µ(x)

∀y ∈ Ω,
∑
x∈Ω

λ(x , y) = ν(y).

In other words, λ is a joint distribution whose marginal
distributions are resp. µ and ν.
The fundamental result of the coupling technique is the
following one:
If (X ,Y ) ∼ λ then

‖µ− ν‖ ≤ Pr[X 6= Y ].



Example of coupling

p = 0.5 p = 0.6

Prove that, over 100 run, the second coin make more tails.
Boring solution: Compute the binomial law.
Elegant solution: Couple the coin’s distributions !!
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Example of coupling

Correlate the coin’s distribution:

• If the first coin makes a tail, the second coin makes a tail.
• If the first coin makes a head, the second coin makes a tail

with probability 0.2.
It’s clear that marginal distributions are respected and that the
second coin makes more tails.
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Coupling for one round

x1, . . . , x`,u`+1, . . . ,uq x1, . . . , x`, x`+1, . . . ,uq
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Coupling of the first ` inputs

P ′1(xi ⊕ k0) := P1(xi ⊕ k0)

implies a successful coupling for the i-th query.
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1 then we set the
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Coupling of the `+ 1-th query

We can’t couple if:
• ∃i ≤ q, x`+1 ⊕ k0 = ai
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• ∃i ≤ q,u`+1 ⊕ k0 = ai
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The probability of not coupling is upperbounded by:

2q
N
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Result for one round

We have

Advncpa
E1

(q) ≤
q−1∑
`=0

2q
N

=
2q2

N



Result for t rounds

We use the same strategy, taking the same keys in both
systems and fixing P ′j = Pj when computing the outputs of
x1, . . . , x`.

For the `+ 1-th query, we can’t couple if there are collisions at
every round. The probability of not coupling is upperbounded
by:

(2q)t

N t ,

because all keys are independent.
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Result for t rounds

Advncpa
E (q) ≤ q × (2q)t

N t



Two weak make one strong

Composing two NCPA-secure ciphers gives a CCA-secure
cipher.

Using
EM2t ≡ EMt ◦ EM−1

t

we find that for 2t rounds, one has:

Advcca
E (q) ≤ 2

√
q × (2q)t

N t = O

(
q

t+1
2

N
t
2

)
= O

(
q

2t+2
4

N
2t
4

)
.



CCA security for small number of
rounds

rounds Conjectured Best known bound Reference
1 1/2 1/2 (Even & Mansour)
2 2/3 2/3 (Bogdanov et al.)
3 3/4 3/4 (Steinberger)
· · · · · · · · · · · ·
t t/(t + 1) 3/4 (St., this paper)
· · · · · · · · · · · ·
8 8/9 4/5 (this paper)
10 10/11 5/6 (this paper)
· · · · · · · · · · · ·
2t (2t)/(2t + 1) 2t/(2t + 2) (this paper)

Open problem: Prove the bound N t/(t+1) for adaptive
adversaries (understand what adaptivity really brings to the
adversary).
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